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ABSTRACT: The COVID-19 pandemic increased the demand for indoor
air cleaners. While some commercial electronic air cleaners can be effective
in reducing primary pollutants and inactivating bioaerosol, studies on the
formation of secondary products from oxidation chemistry during their use
are limited. Here, we measured oxygenated volatile organic compounds
(OVOCs) and the chemical composition of particles generated from a
hydroxyl radical generator in an office. During operation, enhancements in
OVOCs, especially low-molecular-weight organic acids, were detected.
Rapid increases in particle number and mass concentrations were observed,
corresponding to the formation of highly oxidized secondary organic aerosol
(SOA) (O:C ∼ 1.3), with an enhanced signal at m/z 44 (CO2

+) in the
organic mass spectra. These results suggest that organic acids generated
during VOC oxidation contributed to particle nucleation and SOA
formation. Nitrate, sulfate, and chloride also increased during the oxidation
without a corresponding increase in ammonium, suggesting organic nitrate, organic sulfate, and organic chloride formation. As
secondary species are reported to have detrimental health effects, further studies should not be limited to the inactivation of
bioaerosol or reduction of particular VOCs, but should also evaluate potential OVOCs and SOA formation from electronic air
cleaners in different indoor environments.

■ INTRODUCTION
Many people spend most of their time indoors, making air
quality in these spaces an important factor for human health.
Indoor air quality (IAQ) depends on several factors, including
but not limited to exchange with outdoor air, filtration,
emissions from indoor sources, chemical reactions, e.g., via
oxidation or multiphase processes, and deposition onto
surfaces.1 Due to the impact of IAQ on health, there is a
growing demand for air cleaning technologies meant to reduce
exposure to potentially detrimental substances indoors. This
demand has increased considerably during the course of the
recent COVID-19 (severe acute respiratory syndrome
coronavirus 2, SARS-CoV-2) pandemic due to the increased
recognition of the role of airborne virus transmission,
especially indoors.2−6

Air cleaners are usually deployed with the intention to
remove indoor pollutants such as particles or volatile organic
compounds (VOCs) as well as to inactivate pathogens. Two
types of air cleaning technologies are commonly used to
remove particles: mechanical filtration and electronic air
cleaners (e.g., ionizers and electrostatic precipitators). Gaseous
pollutants such as VOCs and odoriferous compounds can be
removed via a number of different technologies: adsorbent
media air filters (e.g., activated carbon) and various electronic
air cleaning devices that generate ions, reactive species, or
other chemical products such as photocatalytic oxidation

(PCO), plasma, and ozone-generating equipment, among
others.7−9 In addition, hydroxyl radical (OH) generation via
photolysis of ozone or water is also used to destroy odors and
VOCs, usually as a substitute for ozone-generating air
cleaners.10,11 Generally, it has been shown that ultraviolet
germicidal irradiation (UVGI), ionizers, ozone generators, and
PCO purifiers can be capable of inactivating viruses, bacteria,
and other bioaerosol.6,8,9,12−19 However, their efficacy in real
environments is disputed since their effectiveness can vary
depending on the operating conditions (e.g., bacteria can
repair damage if dosed with insufficient UV radiation) and
there are no standardized testing conditions.16,17,20,21

There are increasing concerns regarding the use of electronic
air cleaners, as these devices can potentially generate
unintended byproducts via oxidation chemistry similar to
that in the atmosphere.22,23 The oxidation mechanism of
VOCs in the atmosphere can be simplified as the following:
(1) initial attack of the VOCs by oxidants (OH, O3, and NO3),

Received: June 1, 2021
Revised: June 29, 2021
Accepted: July 2, 2021
Published: July 14, 2021

Letterpubs.acs.org/journal/estlcu

© 2021 American Chemical Society
691

https://doi.org/10.1021/acs.estlett.1c00416
Environ. Sci. Technol. Lett. 2021, 8, 691−698

This article is made available via the ACS COVID-19 subset for unrestricted RESEARCH re-use
and analyses in any form or by any means with acknowledgement of the original source.
These permissions are granted for the duration of the World Health Organization (WHO)
declaration of COVID-19 as a global pandemic.

D
ow

nl
oa

de
d 

vi
a 

G
E

O
R

G
IA

 I
N

ST
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
M

ay
 2

4,
 2

02
2 

at
 1

9:
28

:4
4 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Taekyu+Joo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jean+C.+Rivera-Rios"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+Alvarado-Velez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sabrina+Westgate"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nga+Lee+Ng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.estlett.1c00416&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.1c00416?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.1c00416?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.1c00416?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.1c00416?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.estlett.1c00416?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/estlcu/8/8?ref=pdf
https://pubs.acs.org/toc/estlcu/8/8?ref=pdf
https://pubs.acs.org/toc/estlcu/8/8?ref=pdf
https://pubs.acs.org/toc/estlcu/8/8?ref=pdf
pubs.acs.org/journal/estlcu?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.estlett.1c00416?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/journal/estlcu?ref=pdf
https://pubs.acs.org/journal/estlcu?ref=pdf
https://pubs.acs.org/page/vi/chemistry_coronavirus_research
https://pubs.acs.org/page/vi/chemistry_coronavirus_research


(2) organic peroxy radical reactions, and in some cases (3)
alkoxy radical reactions.24,25 Organic peroxy radicals can react
with other species in the atmosphere (e.g., NO, NO2, HO2,
etc.) and undergo functionalization or form alkoxy radicals.
Alkoxy radicals can fragment and form smaller organic
compounds in the atmosphere that can be oxidized further.
Fragmentation leads to increased volatility whereas function-
alization decreases volatility and increases solubility in water.24

These complex, multigenerational, gas-phase oxidation pro-
cesses result in the formation of a large variety of organic
compounds, which can undergo gas-particle partitioning and/
or nucleation to form secondary organic aerosol (SOA). Such
atmospheric processing was reported indoors during air cleaner
operation. Previous studies reported secondary pollutant
formation from ionizers, PCO systems with UV lamps,
electrostatic precipitators, and plasma systems.15,26−30 These
technologies were found to generate gas-phase byproducts
such as ozone and less-oxidized VOCs (e.g., aldehydes) as well
as secondary particles (e.g., ozone reaction with terpenes from
air fresheners).8,9,26,30−32 However, there are no studies that
report more-oxidized VOCs (e.g., carboxylic acids) or aerosol
composition, which require advanced instrumentation.
In this work, we evaluated the effect of a commercial

electronic air cleaner (hydroxyl radical generator) operated
inside an office. We monitored gas-phase oxidized products
and PM1 (particulate matter less than 1 μm in diameter) size
distribution and composition. We show that the operation of
this device leads to the formation of small organic acids and
increases PM1 number and mass concentrations. As some
byproducts of VOC oxidation can have adverse health
effects,33−38 these results show that care must be taken when
choosing an adequate and appropriate air cleaning technology
for a particular environment and task.

■ MATERIALS AND METHODS
The experiment was performed in an office (∼16 m2), which
was unoccupied except for instrument setup, in the Ford
Environmental Sciences and Technology Building at the
Georgia Institute of Technology. We performed the experi-
ment in the following sequence: (1) 2.33 h of office
background sampling, (2) 1.5 h of hydroxyl generator
operation (Titan model #4000, International Ozone Tech-
nologies Group, Inc., Delray Beach, FL), and (3) 1.5 h of
sampling after the device was turned off. Briefly, the device
generates OH radicals and hydrogen peroxide (H2O2) via
photocatalytic reaction of TiO2 with UV-A range (365−385
nm) light and H2O and O2 in the air.39,40 Many other brands
of hydroxyl generator are available in the market and employ a
similar technology.
Gas-phase organic compounds were measured using a high-

resolution time-of-flight chemical ionization mass spectrometer
(HR-ToF-CIMS, Aerodyne Research Inc., Billerica, MA) with
iodide (I−) as a reagent ion, which selectively measures some
types of oxygenated organics.41 The instrument was not
calibrated to report the mass concentrations of detected
species and the signals were reported in counts per second. O3
and NOx were monitored using an O3 Analyzer (T400,
Teledyne, City of Industry, CA), a NO-NO2-NOx Analyzer
(42C, Thermo Fisher Scientific, Waltham, MA), and a Cavity
Attenuated Phase Shift NO2 monitor (CAPS, Aerodyne
Research Inc.).
Size-resolved PM1 number and volume concentrations were

measured using a scanning mobility particle sizer (SMPS, 17

nm−1 μm). The SMPS is a combination of a differential
mobility analyzer (DMA) (TSI 3040, TSI Inc., Shoreview,
MN) and a condensation particle counter (CPC) (TSI 3775).
In addition, we deployed a separate CPC (TSI 3025 A) to
monitor the total number concentration of particles (all
particles under roughly 3 μm). Chemical composition of
particles smaller than 1 μm was monitored using a high-
resolution time-of-flight aerosol mass spectrometer (HR-ToF-
AMS, Aerodyne Research Inc.). HR-ToF-AMS quantifies
nonrefractory species (organics, nitrate, sulfate, ammonium,
and chloride) mass concentrations and measures the bulk
elemental composition of the particles (e.g., O:C and H:C
ratios) via particle vaporization on heated surface (∼600 °C)
and electron ionization (70 eV).42,43 The elemental ratios for
particles were calculated based on the “Improved-Ambient”
method to correct for molecular functionality-dependent biases
which can originate from the vaporization and ion
fragmentation processes in the instrument.43

■ RESULTS
Formation of Oxygenated VOCs (OVOCs). The

immediate formation of oxygenated products was observed
by the HR-ToF-CIMS (Figure 1) when the device was turned
on. Formic acid (m/z 173, CH2O2I

−), nitrous acid (m/z 174,
HONOI−), acetic acid (m/z 187, C2H4O2I

−), iminoacetic acid
(m/z 200, C2H3NO2I

−), oxamide (m/z 215, C2H4N2O2I
−),

glyceraldehyde (m/z 217, C3H6O3I
−), glycerol (m/z 219,

C3H8O3I
−), alanine (m/z 216, C3H7NO2I

−), and acetoacetic
acid (m/z 229, C4H6O3I

−) are identified and showed the most
obvious enhancements during the operation period. Enhanced
glyceraldehyde and glycerol at the beginning of the experiment
(12:10 pm) was likely due to the presence of people in the
office initially (to set up instruments for this study), as these
compounds are formed as intermediates in metabolism and
widely used in cosmetics or as an additive in foods.44−46

In contrast, glycolic acid (m/z 217, C2H4O3I
−), succinic acid

(m/z 245, C4H6O4I
−), hydrogen peroxide (m/z 161, H2O2I

−),
nitric acid (m/z 190, HNO3I

−), and dinitrogen pentoxide (m/
z 235, N2O5I

−) decreased during the operation period. While
glycolic acid and succinic acid decreased continuously
throughout the experiment, they decreased faster during the
device operation. These two compounds are widely used in
skin care products and are applied in various commercial goods
(e.g., food, pharmaceuticals, polymers, paint, cosmetics),
respectively.47,48 Hydrogen peroxide increased during the
background period and decreased during the operation of
device. As mentioned in the previous section, TiO2 photo-
catalytic technology is reported to produce H2O2 as another
product.39 However, H2O2 decreased when the device was
turned on and rebounded after the device was turned off. The
pre-existing H2O2 in the office could have been reacting with
the generated OH radicals but flattened as a result of
regeneration via self-reaction of hydroperoxyl radicals. The
increase in HONO and decrease in HNO3 and N2O5 during
the device operation could have been a consequence of
increasing particle surface area during the device operation via
new particle formation (Figure 2). Surface reactions indoors
have been reported to play a role as a source of HONO but as
a sink for HNO3 and N2O5.

49−51

Formation of Secondary Organic Aerosol. Particle
number and volume concentrations started increasing once the
device was in operation (Figure 2a). Both the number and
volume concentrations increased rapidly in the first 30 min
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after the device was turned on and slowed down after reaching
∼4000 particles cm−3 and ∼5 μm3 cm−3, respectively. This was
followed by a rapid decrease in concentrations after the device
was turned off. The increase in particles was mostly within the
PM1 size range based on the agreement between the SMPS
(PM1 only) and the CPC (all particles under roughly 3 μm).
During the operation, an enhancement was observed in the
100−200 nm size range for both particle number and volume
concentrations (Figure S2). It is noted that a similar
experiment was performed in a laboratory space (∼140 m2)
and similar results were observed (Figure S3).
The time series of the species measured by the HR-ToF-

AMS are shown in Figure 2b. A collection efficiency of 0.45
was applied to the data as the inorganic concentrations were
low and the aerosol did not contain high mass fractions of
acidic sulfate or ammonium nitrate.52 The chemical
composition of the particles during the operation period
confirmed SOA formation, with organics reaching 2.1 μg m−3

after the device was turned on. Figure 2 also shows that the
mass concentrations of nonrefractory species reported by the
HR-ToF-AMS were somewhat lower than the volume
concentration enhancement measured by the SMPS (con-
verted to mass concentration by the density of each species;
Figure S4). This difference was expected since both instru-
ments sampled particles without the use of a dryer at the
instrument inlets. Thus, the particle concentration reported by
the SMPS included water whereas particle water can be
evaporated in the low-pressure aerodynamic lens and vacuum
system of HR-ToF-AMS.52−55 The discrepancy diminishes
when accounting for particle water as shown in Figure S4.
Ammonium concentration was low throughout the experiment
and showed little changes whereas nitrate, sulfate, and chloride
increased during the device operation period. Since we did not
observe ammonium increasing along with nitrate, sulfate, or
chloride, these species are likely in the form of organic nitrate,
organic sulfate, and organic chloride. Organic mass spectra
shows enhanced fraction at m/z 44 (CO2

+) during the device
operation (Figures 3a and S5), with increased O:C and
decreased H:C (Figures 3b and S6a). Note that organic
contribution to m/z 28 (CO+) is set to be equal to the value at
m/z 44 during data analysis,43,56 hence the signals at these two
ions are the same. The increase in the degree of oxidation of
aerosol is further illustrated in the Van Krevelen diagram in
Figure 3b.57−59 The aerosol evolution followed a slope of ∼
−1, with particle carbon oxidation state (OSC = 2 O:C - H:C)

Figure 1. HR-ToF-CIMS results showing (a) the mass spectrum
difference between before and during the operation of hydroxyl
generator (positive: increased during the operation/negative:
decreased during the operation), (b) time evolution of increased
species during the device operation, and (c) time evolution of
decreased species during the device operation. The data are 10 min
averaged data and are normalized by the maximum signal of each
species. The hydroxyl generator was in operation from 2:30 pm to
4:00 pm (highlighted in yellow). Glyceraldehyde shows negative value
in panel a as the enhancement lasted only for a short period during
the device operation.

Figure 2. Time series of (a) particle number (CPC and SMPS) and volume concentrations (SMPS) and (b) nonrefractory species concentrations
(HR-ToF-AMS). The mass fractions of nonrefractory species of the office background and during the hydroxyl generator operation are shown in
the pie charts. The hydroxyl generator was in operation from 2:30 pm to 4:00 pm (highlighted in yellow).
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increasing during device operation, as a result of enhancements
in O:C and reductions in H:C.60

■ DISCUSSION
Generation of hydroxyl radicals indoors reduces VOC
concentrations in a similar manner to tropospheric VOC
oxidation chemistry, which proceeds through complex, multi-
generational chemistry and results in the formation of a large
number of organic products. The byproducts formed from
these reactions in this study depend on the identity of the
VOCs in the office. VOCs were not measured in this work;
however, VOC concentrations in multiple different office
buildings in the United States were reported to be dominated
by acetone, ethanol, 2-propanol, toluene, xylenes, limonene,
dichloromethane, 1,1,1-trichloroethane, 2-propanone, n-pen-
tane, n-tetradecane, n-pentadecane, and n-hexadecane.61−64 It
is possible that the office in this study has a similar VOC
speciation, though it could have a lower total carbon budget
due to no occupancy and no activities, such as printing,65

which can lead to VOC emissions. The observed oxygenated
C1−C4 compounds can be formed from functionalization and
fragmentation of such VOCs during the oxidation.24,32

Although we only observed small carboxylic acids in the gas

phase, this does not exclude the formation of aldehydes and
larger OVOCs,32 which might not be detected by I-CIMS, be
lost in the instrument inlet lines, interact with surfaces,1,66 or
participate in new particle formation and growth.67 Increasing
particle number and mass concentrations and the formation of
highly oxidized SOA suggest that new particle formation and
condensation growth can be a loss process of larger, less-
volatile OVOCs. The SOA formed has an O:C of ∼1.3, which
is higher than the typical O:C range observed for more-
oxidized oxygenated organic aerosol (MO-OOA) in ambient
environments.58,68 The observed nucleation is likely due to the
small condensation sink with low aerosol background (∼581
particles cm−3) in the office. The enhancement of m/z 44
(CO2

+) in the HR-ToF-AMS organic mass spectra indicates
the contribution of organic acids in SOA formation, as their
thermal decarboxylation gives rise to the CO2

+ frag-
ment.58,69−72 In the Van Krevelen diagram, the SOA evolved
along the ∼ −1 line, which corresponds to the addition of
carboxylic acids and/or simultaneous increases in alcohol and
carbonyl groups.57,58 Taken together, these results show that
carboxylic acids were formed during the oxidation process and
contributed to new particle formation owing to their low
volatility.24,67,73 The enhancements in particle-phase carboxylic
acids measured by the HR-ToF-AMS are in agreement with
the formation of gas-phase carboxylic acids measured by the I-
CIMS.
Nitrate, sulfate, and chloride enhancements are expected to

be associated with organic nitrate, organic sulfate, and organic
chloride formation (Figure S6). The average NO+/NO2

+ ion
ratio from the HR-ToF-AMS is widely used as an indicator to
differentiate inorganic vs organic nitrate.74−76 The NO+/NO2

+

ratio for inorganic nitrate during the instrument calibration was
1.98, and previous laboratory studies have shown that this ratio
is much higher for organic nitrate than inorganic
nitrate.74,77−79 The average NO+/NO2

+ ratio during the
operation period was ∼17, implying that virtually all the
particle-phase nitrate was organic nitrate. The contribution of
organic sulfate can be examined by evaluating the fractions of
HSO3

+ and H2SO4
+ in HxSOy

+ fragments (SO+, SO2
+, SO3

+,
HSO3

+, and H2SO4
+).80 Both fractions decreased when the

device was turned on, implying the presence of organic sulfate.
Organic chloride formation can be associated with chlorine-
containing VOCs which may be emitted or formed through
interactions with cleaning products.81,82

To our knowledge, this is the first study that monitored the
chemical composition of secondary products in both gas and
particle phases during the operation of an electronic air cleaner
that dissipates oxidants in a real-world setting. Although we
lack parent VOC measurements (I-CIMS has low sensitivity
toward less- or nonoxidized VOCs), limited number of
OVOCs, small enhancements in SOA, and negligible changes
in ozone and NOx (Figure S7) observed during this work were
assumed to be due to low initial VOC concentrations in the
office where this study was conducted. Much larger enhance-
ments in OVOCs, SOA, and ozone could be observed in other
types of indoor environments such as industrial settings,
homes, and restaurants, which can have much larger VOC
concentrations, even more than in outdoor locations.1,66,82−84

Secondary VOC oxidation products have been shown to have
detrimental effects on human health.33,35,36,85,86 Specifically,
SOA has been reported to induce cellular reactive oxygen
species (ROS) generation, inflammatory cytokine production,
and oxidative modification of RNA.87−89 The toxicity of SOA

Figure 3. HR-ToF-AMS results showing (a) gray: office background
organic mass spectrum/green: organic mass spectrum during hydroxyl
generator operation and (b) Van Krevelen-triangle diagram of
organics. The black lines encompass the triangular space occupied
by ambient SOA.58 The carbon oxidation states (OSC) are shown
with gray dotted lines. The blue data points correspond to office
background and the red data points correspond to device operation.
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could increase with increasing OSC.
37,90 Therefore, future

studies on air cleaning technologies should not be limited to
the inactivation of bioaerosol or reduction of particular VOCs,
but should also evaluate potential OVOCs and SOA formation
during their operation. Further studies need to be conducted
to comprehensively investigate how different factors and
conditions impact secondary chemistry, including testing in
different indoor environments with various device settings as
well as evaluating uniformity across a larger number of devices
and reproducibility in measurements. The electronic air
cleaner tested in this study is similar to many other
commercially available devices, and similar experiments should
be conducted with other devices.
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